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700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:



Esther Rolf (UC Berkeley) Figure: http://sustain.stanford.edu/predicting-poverty 

Poverty mapping

Jean et al. 2016, Science

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:

http://sustain.stanford.edu/predicting-poverty
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Mapping Population Distribution

Figure from: https://www.mdpi.com/2072-4292/10/9/1409/pdf-vor (Mossoux et al. Paper)

Mossoux et al. 
2018

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:
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Monitoring Deforestation

Photos: https://www.mdpi.com/2072-4292/12/6/901 (de Bem et al. Paper)

de Bem et al. 2020

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:

https://www.mdpi.com/2072-4292/12/6/901
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Wildlife Detection and Monitoring

Duporge et al. 2020

Photos: https://blog.maxar.com/earth-intelligence/2021/deep-learning-detects-elephants-
in-maxar-satellite-imagery-on-par-with-human-accuracy

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:

http://sustain.stanford.edu/predicting-poverty
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See, e.g. Burke et al. 2021

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:



However, transforming satellite 
imagery into relevant statistics is 
costly (computation and expertise) 
and most solutions are domain-
specific.  

Our approach: a general method that allows researchers 
to easily predict any variable from space. 

ResNet-18

700+ satellites are orbiting the earth, collecting over 90TB 
of data daily, enabling researchers to monitor our world 
across multiple domains:
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goal: learn functions that take in satellite 
images, and predict variables of interest

f(     ) ≈ 45% forest
g(     ) ≈ 14 ships 

e.g. ResNet-18

In this talk:
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Simplicity 
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Multi-task Observation using Satellite Imagery & Kitchen Sinks
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Simplicity 
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Without sacrificing accuracy or applicability. 

The machine learning 
system should be simple to 
use and computationally 

efficient for users.
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Simplicity 

Generalizability 

Without sacrificing accuracy or applicability. 
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prediction system should be 

as simple as possible. 
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MOSAIKS design goals 
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Simplicity 

Generalizability 

Without sacrificing accuracy or applicability. 

One machine learning 
system could be useful for 

many prediction tasks,
using a common source of 

satellite imagery
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MOSAIKS design goals 
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Without sacrificing accuracy or applicability.
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Random Convolutional Features

Random Filters 
extracted from data set

convolve relu sum 

Feature Responses
d

Feature Vector 
2

66664

x0
...
...
xd

3

77775

Sample Image 

d

� +

Based on “random kitchen 
sinks” (Rahimi & Recht 2008)

Random convolutional features 
have been applied to: 

- classifying photographs 
- (Coates & Ng, 2011) 

- encoding genomic sequences 
- (Morrow et al., 2017) 

- predicting solare flares 
- (Jonas et al., 2018) 
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Prediction with  
Random convolutional features (RCF)

Feature Matrix in Rn x d n Images 
�
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Image features are created without knowledge of labels!

min
 

{�� � ¢�ŘŘ + Ώ� �ŘŘ}
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n Images 
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In contrast, Convolutional Neural Networks (CNNs)  
learn domain-specific image features

model weights

Feature Matrix in Rn x d 

𝟂:

Prediction with  
unsupervised features

min
 

{�� � ¢�ŘŘ + Ώ� �ŘŘ}
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Prediction Domains
• Forest Cover 

• Elevation 

• Population 

• Nighttime Luminosity 

• Income 

• Road Length 

• Housing Price
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MOSAIKS compared to fine-tuned ResNet-18 (within US)
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MOSAIKS compared to fine-tuned ResNet-18 (within US)

Fully trained ResNet-18: 7.9 hours 
(AWS EC2 p3.xlarge, Tesla V100 GPU) 

MOSAIKS: 1 minute 
(CPU, 10 cores) 

Training times:

r
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Satellite images are largely scale and orientation invariant.

The structures in satellite imagery can explain why performance 
of simpler methods would match that of more complex methods.

The most commonly used CNNs are designed for 
classification of “natural imagery”
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1. Grid the U.S. 
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Methods
1. Grid the U.S. 
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Methods

X in Rnxd y in Rnx7

Train Set Validation Set

1. Grid the U.S. 2. Download and featurize Images (RCF) 
3. Associate with each grid point each of 7 labels 

4. k-fold cross validation; pick model parameters
fold 1 fold 2 fold 3
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Methods

X in Rnxd y in Rnx7

Train Set Validation Set

5. Report accuracy (R2) for 
concatenated validation sets.

1. Grid the U.S. 2. Download and featurize Images (RCF) 
3. Associate with each grid point each of 7 labels 

4. k-fold cross validation; pick model parameters
fold 1 fold 2 fold 3
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Labels
vs.

Predictions

US Outcome #1: Forest Cover
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Labels Predictions

Labels
vs.

Predictions

US Outcome #3: Population Density
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Labels
vs.

PredictionsLabels Predictions

Outcome #5: Income (per household)
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A common featurization allows use to directly 
compare performance across outcomes. 



Global Results
• Forest cover, nighttime luminosity, elevation  
• Train on ~700k  image label pairs, test on ~100k 

• Using the exact same featurization as in the U.S. 
• Report accuracy (R2) on test set.



Global Results
• Forest cover, nighttime luminosity, elevation  
• Train on ~700k  image label pairs, test on ~100k 

• Using the exact same featurization as in the U.S. 
• Report accuracy (R2) on test set.

challenges to scaling globally: 
• more imagery 
• label distribution mismatch U.S. to global 
• images differing quality, many are “missing”
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Global Outcome #1: Forest Cover
r2 = 0.85
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Global Outcome #2: Population Density
r2 = 0.62
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Global Outcome #3: Nighttime Lights
r2 = 0.49
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Global Outcome #4: Elevation
r2 = 0.45 
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MOSAIKS for measuring human development
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MOSAIKS for measuring human development
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Our fixed featurization allows further 
exploration of our predictions, and 

their use in practice 

Many analyses end here.
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Generalizing across space
Goal: assess whether our method is generalizing 
over space, or just learning locality.  

• Procedure: Split up the U.S. into geographically 
disjoint train and validation sets:

Train Set

Validation SetΈ

Έ• Vary    ; at what distance from the training set 
can we predict points in the validation set?
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As degree of spatial extrapolation (δ) increases, 
performance degrades differently across domains. 

Training data
Validation data
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increasing Έ

As degree of spatial extrapolation (δ) increases, 
performance degrades differently across domains. 

Training data
Validation data
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spatial 
interpolation
baseline

Compared to a spatial interpolation baseline, our 
predictions have higher performance on 5/7 tasks. 
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spatial 
interpolation
baseline

Compared to a spatial interpolation baseline, our 
predictions have higher performance on 5/7 tasks. 

Domains where performance is worse than the baseline 
are known to exhibit high spatial correlation. 

Takeaway: for certain domains, augmenting with location 
could be beneficial.



Model Diagnostics



Model Diagnostics

reiterate: with standard neural nets,  
we would need to retrain for each horizontal datapoint. 



Context switch: 
we’ve expanded to global scale, 
but can we get finer resolution?



super-resolution 

Can we predict variables at sub-image resolution?

2

predicted road length (km):

what we’ve done so far
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Bonus: “super-label-resolution predictions” 
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In progress: a public API where users can query for 
features to run their own scientific analyses.
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web-based UI 

screenshot by  
Alex Gao, UC Berkeley



Esther Rolf (UC Berkeley)

Summary: unsupervised RCF features enable a 
generalizable and accessible system for SIML. 
  
What’s next:
• Better unsupervised/self-supervised 

representations for satellite imagery. 
• Adapting MOSAIKS design principles to other SIML 

prediction settings (segmentation, etc). 

General SIML resources:
• MOSAIKS code, data, and tutorials: http://

www.globalpolicy.science/mosaiks  
• Torchgeo (https://torchgeo.readthedocs.io/en/latest/) 
•  Thorough list of resources at  https://github.com/

robmarkcole/satellite-image-deep-learning 

http://www.globalpolicy.science/mosaiks
http://www.globalpolicy.science/mosaiks
https://torchgeo.readthedocs.io/en/latest/
https://github.com/robmarkcole/satellite-image-deep-learning
https://github.com/robmarkcole/satellite-image-deep-learning
https://github.com/robmarkcole/satellite-image-deep-learning
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